[IR] WARP: An Efficient Engine for Multi-Vector Retrieval:提出新型检索引擎WARP,通过动态相似性估算、隐式解压缩和两阶段归约等创新技术,将多向量检索速度提升高达41倍,并显著减少索引大小,为高效信息检索提供新方案。
[LG] Critique Fine-Tuning: Learning to Critique is More Effective than Learning to Imitate:提出“批判微调”(CFT)框架,反直觉地证明让模型学习“批评”错误答案比单纯模仿正确答案更有效地提升数学推理能力,并展现出卓越的数据效率。
[CL] Actions Speak Louder than Words: Agent Decisions Reveal Implicit Biases in Language Models:创新性地利用Agent模拟技术揭示了即使是最先进的LLM也存在显著的隐性社会人口统计学偏见,且更先进模型隐性偏见反而加剧,强调需关注AI系统在实际行为中的公平性。
[LG] AdditiveLLM: Large Language Models Predict Defects in Additive Manufacturing: 探索了LLM在制造业中的新应用,成功利用LLM预测3D打印缺陷,并在结构化输入下取得93%的预测准确率,为智能制造提供新思路。
[LG] Deep-and-Wide Learning: Enhancing Data-Driven Inference via Synergistic Learning of Inter- and Intra-Data Representations: 提出“深度与广度学习”(DWL)框架,通过协同学习数据内和数据间表征,显著提升深度学习模型的精度和计算效率,最高提速达200倍,为深度学习发展带来新方向。